Hadamard Functions of Inverse M-Matrices
نویسندگان
چکیده
We prove that the class of GUM matrices is the largest class of bi-potential matrices stable under Hadamard increasing functions. We also show that any power α ≥ 1, in the sense of Hadamard functions, of an inverseM -matrix is also inverseM matrix showing a conjecture stated in Neumann [15]. We study the class of filtered matrices, which include naturally the GUM matrices, and present some sufficient conditions for a filtered matrix to be a bi-potential. AMS subject classification: 15A48, 15A51, 60J45.
منابع مشابه
On the Hadamard product of inverse M-matrices
We investigate the Hadamard product of inverse M-matrices and present two classes of inverse M-matrices that are closed under the Hadamard multiplication. In the end, we give some inequalities on the Fan product of M-matrices and Schur complements. © 2000 Elsevier Science Inc. All rights reserved. AMS classification: 15A09; 15A42
متن کاملComplex Hadamard Matrices from Sylvester Inverse Orthogonal Matrices
A novel method to obtain parameterizations of complex inverse orthogonal matrices is provided. These matrices are natural generalizations of complex Hadamard matrices which depend on non zero complex parameters. The method we use is via doubling the size of inverse complex conference matrices. When the free parameters take values on the unit circle the inverse orthogonal matrices transform into...
متن کاملEla a New Eigenvalue Bound for the Hadamard Product of an M-matrix and an Inverse M-matrix
If A and B are n× n nonsingular M -matrices, a new lower bound for the minimum eigenvalue τ(A◦B) for the Hadamard product of A and B is derived. This bound improves the result of [R. Huang. Some inequalities for the Hadamard product and the Fan product of matrices. Linear Algebra Appl., 428:1551–1559, 2008.].
متن کاملThe Class of Inverse M-Matrices Associated to Random Walks
THE CLASS OF INVERSE M-MATRICES ASSOCIATED TO RANDOM WALKS∗ CLAUDE DELLACHERIE† , SERVET MARTINEZ‡ , AND JAIME SAN MARTIN‡ Abstract. Given W = M−1, with M a tridiagonal M -matrix, we show that there are two diagonal matrices D,E and two nonsingular ultrametric matrices U, V such that DWE is the Hadamard product of U and V . If M is symmetric and row diagonally dominant, we can take D = E = I. W...
متن کاملA Life ' s Work on Hadamard Matrices ,
1 Hadamard matrices in Space Communications One hundred years ago, in 1893, Jacques Hadamard 21] found square matrices of orders 12 and 20, with entries 1, which had all their rows (and columns) orthogonal. These matrices, X = (x ij), satissed the equality of the following inequality jdet Xj 2 n i=1 n X j=1 jx ij j 2 and had maximal determinant. Hadamard actually asked the question of matrices ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 31 شماره
صفحات -
تاریخ انتشار 2009